a) Zu zeigen: \(|z\cdot w|=|z|\cdot|w|\)
\(z=x+yi\qquad w=u+vi\)
\(z\cdot w=(x+yi)\cdot (u+vi)=(xu-yv)+(xv+yu)i\)
\(|z\cdot w|=\sqrt{(xu-yv)^2+(xv+yu)^2}\)
\(|z\cdot w|=\sqrt{(xu)^2-2xuyv+(yv)^2+(xv)^2+2xvyu+(yu)^2}\)
\(|z\cdot w|=\sqrt{(xu)^2+(yv)^2+(xv)^2+(yu)^2}\)
\(|z|\cdot|w|=\sqrt{x^2+y^2}\cdot\sqrt{u^2+v^2}\)
\(|z|\cdot|w|=\sqrt{(x^2+y^2)\cdot(u^2+v^2)}\)
\(|z|\cdot|w|=\sqrt{(xu)^2+(yv)^2+(xv)^2+(yu)^2}\) ok
b) Zu zeigen: \(|z|^2=z\bar z\)
\(z=x+yi\qquad \bar z=x-yi\)
\(|z|^2=x^2+y^2\)
\(z\bar z==(x+yi)(x-yi)=x^2+y^2\) ok
c) Zu zeigen: \(\left|\dfrac{z}{|z|}\right|=1\)
\(\left|\dfrac{z}{|z|}\right|\)
\(=\left|\dfrac{x+yi}{\sqrt{x^2+y^2}}\right|\)
\(=\left|\dfrac{x}{\sqrt{x^2+y^2}}+\dfrac{y}{\sqrt{x^2+y^2}}\cdot i\right|\)
\(=\sqrt{\left(\dfrac{x}{\sqrt{x^2+y^2}}\right)^2+\left(\dfrac{y}{\sqrt{x^2+y^2}}\right)^2}\)
\(=\sqrt{\dfrac{x^2}{{x^2+y^2}}+\dfrac{y^2}{{x^2+y^2}}}\)
\(=\sqrt{\dfrac{x^2+y ^2}{x^2+y^2}}\)
\(=1\) ok