0 Daumen
275 Aufrufe

Hi, ich soll mit dem Wurzelkriterium zeigen, dass diese Reihe konvergiert:

$$\sum \limits_{n=1}^{\infty}(\frac{1}{2})^{n+(-1)^n}$$

verstehe aber nicht , warum sie das tut, denn wenn ich weiter vereinfache komme ich auf diesen Ausdruck für an

$$(\frac{1}{2})^{n}*2^n$$

und wenn ich daraus die n-te Wurzel ziehe kommt ja genau 1 raus, was ja bedeutet, dass das Wurzelkriterium einem hier keine Auskunft gibt....

Wisst ihr vielleicht, was ich falsch gemacht habe?

VG:)

Avatar von

1 Antwort

+2 Daumen

(1/2)n+(-1)n)=(1/2)n*2^(-1)n≠(1/2)n*2n

2^(-1)n hat nichts mit 2n zu tun , es ist abwechseln 1/2 und 2 1/2 für n ungerade, 2 für n gerade .

Gruß lul

Avatar von 108 k 🚀

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

2 Antworten
3 Antworten
Gefragt 6 Dez 2023 von abi22
2 Antworten
2 Antworten
1 Antwort