Wieso sollte das so sein?
\(E_1: \vec{x} = \begin{pmatrix} 0\\0\\0 \end{pmatrix} + r \cdot \begin{pmatrix} 1\\0\\0 \end{pmatrix} + s \cdot \begin{pmatrix} 0\\1\\0 \end{pmatrix} \)
\(E_2: \vec{x} = \begin{pmatrix} 0\\0\\0 \end{pmatrix} + r\cdot \begin{pmatrix} 2\\0\\0 \end{pmatrix} + s \cdot \begin{pmatrix} 0\\2\\0 \end{pmatrix} \)
\(E_3: \vec{x} = \begin{pmatrix} 1\\1\\0 \end{pmatrix} + r \cdot \begin{pmatrix} 1\\0\\0 \end{pmatrix} + s \cdot \begin{pmatrix} 0\\1\\0 \end{pmatrix} \)
Alle drei Ebenen sind offensichtlich identisch (es handelt sich um die \(x_1x_2\)-Ebene). Aber bei \(E_2\) sind die Richtungsvektoren doppelt so lang wie bei \(E_1\) und bei \(E_3\) ist der Aufpunkt ein anderer als bei \(E_1\).