Aloha :)
Beim ersten Pfad bleibt die \(x\)-Koordinate fest bei \(140\). Die Steigung des Pfades ist daher \(\infty\) und wir können ihn nicht in Form einer "gewöhnlichen" Geradengleichung angeben. Wir wissen jedoch, dass$$x_A=140\quad;\quad y_A\in[30;180]$$Für den zweiten Pfad können wir eine Geradengleichung aus der allgemeinen 2-Punkte-Form bestimmen:
$$\frac{y-y_1}{x-x_1}=\frac{y_2-y_1}{x_2-x_1}$$$$\frac{y-100}{x-30}=\frac{85-100}{200-30}$$$$\frac{y-100}{x-30}=-\frac{3}{34}$$$$y-100=-\frac{3}{34}(x-30)$$$$y=-\frac{3}{34}(x-30)+100$$$$y=-\frac{3}{34}x+\frac{3490}{34}$$Der zweite Pfad kann also durch die folgende Gerade beschrieben werden:$$y_B=-\frac{1}{34}\left(3x-3490\right)\quad;\quad x_B\in[30;200]$$Die \(y\)-Koordinate des zweiten Pfades an der Stelle \(140\) ist: \(y_B(140)=\frac{3070}{34}\approx90,3\). Der zweite Pfad enthält also den Punkt \((140|90,3)\). Dieser Punkt ist ebenso im ersten Pfad enthalten. Damit haben wir unseren Schnittpunkt gefunden.
~plot~ x=140 ; -1/34*(3x-3490); [[30|200|30|120]] ~plot~