a) Sind die folgenden Mengen Unterräume des \( \mathbb{R}^{3} ? \)
(i) \( U=\left\{(x, y, z)^{T} | 2 x-3 y+1=0\right\} \)
(ii) \( V=\left\{\left(\begin{array}{c}{\cos \alpha} \\ {\sin \alpha} \\ {0}\end{array}\right) | \alpha \in \mathbb{R}\right\} \)
(iii) \( W=\left\{\left(\begin{array}{c}{\lambda+2 \mu} \\ {3 \mu-\lambda} \\ {\lambda}\end{array}\right) | \lambda, \mu \in \mathbb{R}\right\} \)
b) Sei \( \left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\} \) eine Basis eines \( \mathbb{R} \) -Vektorraums \( V \). Sind dann (i) \( \left\{2 \vec{v}_{1}+\vec{v}_{3}, \vec{v}_{2}, \vec{v}_{3}\right\} \) bzw. (ii) \( \left\{\vec{v}_{1}+\vec{v}_{3}, \vec{v}_{2}+\vec{v}_{3}, \vec{v}_{1}-\vec{v}_{2}\right\} \) eine Basis von \( V ? \)
Begründen Sie Ihre Behauptungen.
Es gibt vielleicht verschiedene Herangehensweisen. Bei (ii) kann man versuchen, ob man eine nichttriviale Linearkombination der drei Vektoren findet, die 0 ergibt.