Hallo Laura,
Ein Spediteur würde rechen, dass der Kraftstoffverbrauch \(\kappa\) pro Kiste bei großen LKWs bei $$\kappa_g = 20 \frac{\text l}{100 \text{km}} \cdot \frac 1{416} = 0,048 \frac{\text l}{100 \text{km}}$$liegt und die kleinen LKWs $$\kappa_k = 15 \frac{\text l}{100 \text{km}} \cdot \frac 1{166} = 0,90 \frac{\text l}{100 \text{km}}$$brauchen. Also ist ein großer LKW wesentlich günstiger. Er transponiert also \(10 \cdot 416 = 4160\) Kisten mit den \(10\) großen LKWs, die er hat, und die restlichen \(10000-4160=5840\) Kisten mit \(\lceil 5840/166 \rceil = 36\) kleinen LKWs.
Aber Du sollst es wahrscheinlich mit dem Simplex-Verrfahren lösen. Dazu benötigen wir eine Zielfunktion. Der gesamte Kraftstoffverbrauch \(\kappa_{\text{ges}}\) soll minimiert werden. Und der ist $$\kappa_{\text{ges}} = n_g \cdot 20 \frac{\text l}{100 \text{km}} + n_k \cdot 15 \frac{\text l}{100 \text{km}}$$wenn \(n_g\) die Anzahl der großen LKWs und \(n_k\) die Anzahl der kleinen LKWs ist.
Die Restriktionen sind: die Anzahl der Kisten muss 10000 ergeben und die Anzahl der vorhandenen LKWs:$$n_g \cdot 416 + n_k \cdot 166 \ge 10000 \\ 0 \le n_g \le 10 \\ 0 \le n_k \le 40$$Das kann man nun graphisch wie folgt darstellen
~plot~ (10000-166x)/417;x=40;10;[[-2|50|-3|15]];(720-15x)/20;(730-15x)/20 ~plot~
In dem Koordinatensysten steht die waagerechte Achse für die Anzahl der kleinen LKWs und die senkrechte für die Anzahl der großen LKWs. Da die Anzahl jeweils begrenzt ist, habe ich die Grenzen in das Koordinatensystem eingetragen, Die rote Senkrechte begrenzt die Anzahl der kleinen LKWs und die grüne horizontale die Anzahl der großen LKWs, Die Lösung befindet sich also irgendwo in dem Rechteck aus roter und grüner LInie und den Koordinatenachsen. Die Zwangsbedingung $$n_g \cdot 416 + n_k \cdot 166 \ge 10000$$dass in den LKWs für mindestens 10000Kisten Platz sein muss, habe ich als blauen Graphen eingezeichnet. Damit reduzieren sich unsere Lösungen auf das blaue Streckenstück zwischen der roten und grünen Grenze.
Die rosane und die gelbe Gerade sind Linien gleichen Kraftstoffverbrauchs - also $$\kappa_{\text{ges}} = n_g \cdot 20 \frac{\text l}{100 \text{km}} + n_k \cdot 15 \frac{\text l}{100 \text{km}}$$Die rosane LInie steht für ein \(\kappa_{\text{ges}} = 720 \,\text{l/100km}\) und die gelbe für ein \(\kappa_{\text{ges}} = 730 \,\text{l/100km}\). Der Kraftverbrauch wird geringer, umso näher diese Geraden am Ursprung liegen. Somit ist die Lösung der Schnittpunkt der grünen mit der blauen Geraden.
Nachtrag:
Du sollst ja nur das Optimierungsproblem aufstellen, also ich nehme an die Zielfunktionen und die Restriktionen. Für die Aufgabe 1 habe ich das oben bereits gemacht. Für Aufgabe 2 sieht es so aus: Die Zielfunktion ist die Strommenge \(W\), die benötigt wird. Die Variablen sind die Menge \(m_{\text{Al}}\) an Altaluminium und die Menge \(m_{\text B}\) an Bauxit$$W = m_{\text{Al}} \cdot 0,75 \frac{\text{kWh}}{\text{kg}} + m_{\text B} \cdot 15 \frac{\text{kWh}}{\text{kg}}$$Die Restriktionen sind die verfügbaren Mengen und die geforderte Menge an Aluminium$$ 0 \le m_{\text{Al}} \le 60 \text{kg} \\ 0 \le m_{\text B} \le 115 \text{kg} \\ \frac{m_{Al}}{1,15} + \frac{m_{\text B}}{2} \ge 100 \,\text{kg}$$
Gruß Werner