4. Wurzel aus 3^(x+1) = 3. Wurzel aus 2^(2x-1)
<=> 3^((x+1)/4) = 2^((2x-1) /3) | ln(…)
<=> ((x+1)/4 ) * ln(3) = ((2x-1) /3) * ln(2) | *12
<=> (3x+3) * ln(3) = (8x-4) * ln(2)
<=> 3ln(3)*x+3ln(3) = 8ln(2)*x-4ln(2)
<=> 3ln(3) + 4ln(2)= 8ln(2)*x - 3ln(3)*x
<=> 3ln(3) + 4ln(2)= (8ln(2) - 3ln(3) ) *x
<=> (3ln(3) + 4ln(2)) / (8ln(2) - 3ln(3) ) = x
<=> ln(27*16) / ln(256/27) = x
<=> ln(432) / ln(256/27) = x
x ≈ 2,7