0 Daumen
535 Aufrufe

Aufgabe:

Angenommen, Sie haben in einer ersten Lostrommel 10 Kugeln, von denen 2 rot, 2 weiß, 3 blau und 3 schwarz sind. In einer zweiten Lostrommel haben Sie 11 Kugeln von denen 3 rot und 3 weiß, 2 blau und 3 schwarz sind. In einer dritten (und letzten) Lostrommel haben Sie 4 Kugeln, von denen 1 rot, 1 weiß, 1 blau und 1 schwarz ist.

a)Sie ziehen nun aus der ersten Lostrommel nacheinander Kugeln, bis Sie alle Kugeln gezogen haben und legen diese nacheinander auf den Tisch. Anschließend ziehen Sie eine Kugel aus der zweiten Lostrommel und legen Sie daneben. Wie viele Farbreihenfolgen können auf diese Weise entstehen


Problem/Ansatz:

Wie genau soll hierbei vorgehen? Ich bin irgendwie ziemlich ratlos.

Avatar von

1 Antwort

0 Daumen

10! / (2! * 2! * 3! * 3!) * 4 = 100800

Avatar von 489 k 🚀

Angenommen, Sie haben in einer ersten Lostrommel 9 Kugeln, von denen 2 rot, 2 weiß, 2 blau und 3 schwarz sind. In einer zweiten Lostrommel haben Sie 10 Kugeln von denen 3 rot und 3 weiß, 2 blau und 2 schwarz sind. In einer dritten (und letzten) Lostrommel haben Sie 4 Kugeln, von denen 1 rot, 1 weiß, 1 blau und 1 schwarz ist.

a)Sie ziehen nun aus der ersten Lostrommel nacheinander Kugeln, bis Sie alle Kugeln gezogen haben und legen diese nacheinander auf den Tisch. Anschließend ziehen Sie eine Kugel aus der zweiten Lostrommel und legen Sie daneben. Wie viele Farbreihenfolgen können auf diese Weise entstehen?


Wäre das dann in diesem Fall :

10! / ( 3! * 3!* 2!* 2!) *9

?

Ich würde sagen:

9!/(2! * 2! * 2! * 3!) * 4

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community