a)
richtig, denn
\( \int \limits_{836,52}^{\infty} \frac{1}{\sqrt{2 \pi} \cdot 18} \cdot e^{-1 / 2(\frac{t-825}{18})^{2}} d t = 0,261... \)
b)
richtig, denn
\( \int \limits_{832,43}^{\infty} \frac{1}{\sqrt{2 \pi} \cdot 18} \cdot e^{-1 / 2(\frac{t-825}{18})^{2}} d t = 0,34... \)
c)
richtig, denn
\( \int \limits_{805,14}^{844,86} \frac{1}{\sqrt{2 \pi} \cdot 18} \cdot e^{-1 / 2(\frac{t-825}{18})^{2}} d t = 0,73... \)
d)
falsch, denn
\( \int \limits_{787,49}^{862,51} \frac{1}{\sqrt{2 \pi} \cdot 18} \cdot e^{-1 / 2(\frac{t-825}{18})^{2}} d t = 0,96... \) (anstatt 0,92)
e)
falsch, denn
\( \int \limits_{805,14}^{844,86} \frac{1}{\sqrt{2 \pi} \cdot 10,55} \cdot e^{-1 / 2(\frac{t-825}{10,55})^{2}} d t = 0,94... \) (anstatt 0,92)