0 Daumen
3,9k Aufrufe

Aufgabe:

Ein Verkehrsunternehmen gibt an, dass 95 % der Fahrgäste zufrieden sind.

a) Wie hoch ist demnach die Wahrscheinlichkeit, dass von 50 Fahrgästen höchstens zwei unzufrieden sind?

b) Stellen Sie eine Frage, zu deren Beantwortung die Wahrscheinlichkeit (502) · 0,9548 · 0,052 \begin{pmatrix} 50\\2 \end{pmatrix} · 0,95^{48} · 0,05^{2} berechnet wird.

c) Wie viele Fahrgäste müssen mindestens befragt werden, damit mit einer Wahrscheinlichkeit von mindestens 90 % mindestens einer davon unzufrieden ist?

d) Wie viele Fahrgäste müssen mindestens befragt werden, damit mit einer Wahrscheinlichkeit von mindestens 90 % mindestens zwei davon unzufrieden sind?

e) Der Anteil zufriedener Fahrgäste hat sich nach einer Werbeaktion geändert. Die Wahrscheinlichkeit, höchstens einen unzufriedenen Fahrgast unter 100 Fahrgästen zu finden, ist auf 5 % gestiegen. Wie groß ist der Anteil zufriedener Fahrgäste nun?


Ansatz/Problem:

Am Mittwoch schreibe ich meine Vorabi Klausur in Mathe und hänge an der Aufgabe fest. Mein Problem ist, dass ja eigentlich laut Buch p gesucht ist. Wenn ich bei Aufgabenteil a) jedoch 0,05 als Unzufriedenheitsrate als P einsetze, komme ich auf 54,05%. Wenn ich jedoch 0,05% als p einsetze komme ich auf 92,45%, was deutlich realistischer ist und mehr Sinn macht. Wenn nämlich 95% der Fahrgäste zufrieden sind, ist die Wahrscheinlichkeit, dass ein Fahrgast zufrieden ist, doch ebenfalls 95% also 0,95 oder? Zusätzlich sind ja von 50 Fahrgästen, wenn 95% zufrieden sind folglich 47,5 Fahrgäste zufrieden, also würde es mehr Sinn machen, dass die Wahrscheinlichkeit, dass höchstens 2 Fahrgäste unzufrieden sind, also mindestens 48 zufrieden, bei 92,45% liegt und nicht bei 54,05% oder?

Avatar von

Die Überschrift "p gesucht" bezieht sich auf Aufgaben, bei denen der Anteil an der Gesamtheit, der als Parameter für die Binomialverteilung mit p bezeichnet wird, so zu bestimmen ist, dass eine bestimmte Wahrscheinlichkeit einen gegebenen Wert über- oder unterschreitet. Bei der Aufgabe 9 ist dies nur in Aufgabenteil e der Fall. 

2 Antworten

0 Daumen
dass die Wahrscheinlichkeit, dass höchstens 2 Fahrgäste unzufrieden sind, also mindestens 48 zufrieden, bei 92,45% liegt

Nein.

P(X>=48)= P(X=48)+P(X=49)+P(X=50), mit p= 0,95

Ergebnis:0,5405 = P(X<=2) mit p=0,05

http://www.arndt-bruenner.de/mathe/scripts/normalverteilung1.htm

Avatar von 81 k 🚀

Ich meinte eigentlich dass man ja auch 0,05 als p berechnen könnte:


P(X=0)+P(X=1)+P(X=2) mit 0,05=p ergibt ca 92,45%

P(X=0)+P(X=1)+P(X=2) mit 0,05=P(X=r) ergibt ca 54,05%


Laut dem Buch soll man 0,05=P(X=r) berechnen. Die Aufgabe ist aber genauso formuliert wie aufgaben bei den man 0,05 in p einsetzen würde. 0,05 in p macht auch eben mehr Sinn, da die 92% eher in den Sachzusammenhang passen.


Liebe Grüße :)

Ah doch du hattest tatsächlich Recht! Danke dir hab verstanden wo mein Fehler lag.

Du musst unterscheiden, ob du die Zahl der Zufriedenen oder Unzufriedenen

berechnest.


P(X=0)+P(X=1)+P(X=2) mit 0,05=p ergibt ca 92,45%

P(X=0)+P(X=1)+P(X=2) mit 0,05=P(X=r) ergibt ca 54,05%

Das kann nicht sein, Warum 2 verschiedene Ergebnisse bei derselben Rechnung?

Bei der einen hab ich 0,05 in p und bei der anderen 0,05 in P eingesetzt. Komisch ist, dass ich händisch bei beiden das gleiche rausbekommen hab, der Taschenrechner mir aber mit binomcdf die 92% ausspuckt

0 Daumen

Natürlich haben die Matheprofis völlig recht

9. a) ∑ (x = 0 bis 2) ((50 über x)·0.05x·0.95^(50 - x)) = 0.5405

Das Histogramm sieht dabei wie folgt aus:

blob.png

Avatar von 491 k 🚀

Ein anderes Problem?

Stell deine Frage