g: r = (-1/3/4) + s * (3/-2/0)
h: r = (1/8/-1) + t * (-3/4/1)
[3, -2, 0] ⨯ [-3, 4, 1] = [-2, -3, 6] = -[2, 3, -6]
[-1, 3, 4] + r·[3, -2, 0] + s·[2, 3, -6] = [1, 8, -1] + t·[-3, 4, 1] --> r = 1 ∧ s = 1 ∧ t = -1
Der minimale Abstand beträgt
|1·[2, 3, -6]| = 7
Die Beiden Punkte sind
[-1, 3, 4] + 1·[3, -2, 0] = [2, 1, 4]
[1, 8, -1] - 1·[-3, 4, 1] = [4, 4, -2]