Die Aussage \(\lim\limits_{z\rightarrow\infty}z^n = \infty\) ist definiert als: Für alle \(c\in\mathbb{R}\) existiert ein \(d\in\mathbb{R}\) mit \((z>d\implies z^n > c)\).
Der Beweis wählt ein beliebiges \(c\in \mathbb{R}\) und gibt das gesuchte \(d\) explizit an. Die untenstehende Rechnung beweist die Implikation (wenn man den Flüchtigkeitsfehler ignoriert, dass \(d\geq c\) und nicht \(d>c\) gilt), die für die Wahl von \(d\) gelten muss. Die Betragsstriche sind nicht nötig, sofern du zwischen \(+\infty\) und \(-\infty\) unterscheidest in der Vorlesung (orientierte Divergenz vs nicht-orientierte Divergenz).