0 Daumen
220 Aufrufe

Potenzreihe bestimmen:

\( \sum \limits_{n=0}^{\infty} \frac{(-1)^{n}}{4^{2 n}} x^{n} \)

Ich habe Radius = 16, aber ich weiss nicht warum nachstehend ∑(-x/16) ist und nicht ∑(x/16).

\( f(x)=\sum \limits_{n=0}^{\infty} \frac{(-1)^{n}}{4^{2 n}} x^{n}=\sum \limits_{n=0}^{\infty}\left(-\frac{x}{16}\right)^{n} \)

Avatar von

2 Antworten

+1 Daumen
 
Beste Antwort

Aloha :)

Dein Umformungsschritt geht so:$$\frac{(-1)^n}{4^{2n}}x^n=\frac{(-1)^n}{\left(4^2\right)^n}x^n=\frac{(-1)^n}{16^n}x^n=\left(\frac{-1}{16}x\right)^n=\left(-\frac{x}{16}\right)^n$$Für den Konvergenzradius gilt hier:$$r=\frac{1}{\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}}=\frac{1}{\lim\limits_{n\to\infty}\sqrt[n]{\frac{1}{4^{2n}}}}=\frac{1}{\lim\limits_{n\to\infty}\left(\frac{1}{4^2}\right)}=\frac{1}{\frac{1}{16}}=16$$

Avatar von 152 k 🚀
+1 Daumen

Hallo

(-1)^n/a^n=(-1/a)^n oder a^n/b^n=(a/b)^n für alle a,b aus R

Gruß lul

Avatar von 108 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community