Aufgabe: „Das von der Parabel 1/6x^2, ihrer Normalen in P(3/Yp) und von der x-Achse begrenzte Flächenstück im 1.Quadranten wird um die X-Achse gedreht. Welchen Rauminhalt hat der Drehkörper?„
Problem/Ansatz: Bekanntlich gilt ja für das Volumen der um die x-Achse gedrehten Fläche unter einer Funktion die klassische Formel für den Rotationskörper.
Mein Volumen müsste sich ja aus dem Rotationskörper unter der Parabel von 0 bis 3 ergeben und dazu das Volumen des Rotationskörpers von der Fläche unter der Normalen bis zu deren Nullstelle. Letzteres Volumen habe ich einfach mit der Kegelvolumenformel ausgerechnet, da es sich um einen Kegel handelt.
Nun habe ich das gemacht und habe bei der Parabel 4.71 bekommen und für das Volumen des Kegels 14.14.....also zusammen 18.85
Ich denke dass mein Gedanke dahinter richtig ist, bin aber seit einer Stunde dran und verstehe nicht ganz wieso ich nicht aufs richtige Resultat komme von 7.78
Kann jemand helfen ob ich beim ausrechnen oder beim Ansatz falsch liege?