Aloha :)
Zu der Musterlösung kann ich leider nichts sagen, weil du sie nicht gepostet hast. Du hast nämlich Recht, um ein Volumen zu bestimmen sollte man auch über 3 Dimensionen integrieren. Es sei denn, es werden irgendwelche Symmetrien ausgenutzt.
Wegen \(0\le z\le 4-(x^2+y^2)\) gilt insbesondere \(0\le4-(x^2+y^2)\) bzw. \((x^2+y^2)\le4\). Die \(x\)- und \(y\)-Koordinaten beschreiben also eine Kreisfläche mit Mittelpunkt \((0|0)\) und Radius \(r\le2\). Die \(z\)-Komponente ist dann \(z\in[0|4-r^2]\). Daher bieten sich im Folgenden Zylinerkoordinaten an:$$\left(\begin{array}{c}x\\y\\z\end{array}\right)\to\left(\begin{array}{c}r\,\cos\varphi\\r\,\sin\varphi\\z\end{array}\right)\quad\;\quad r\in[0;2]\;\;;\;\;\varphi\in[0;2\pi]\;\;;\;\;z\in[0;4-r^2]$$Wichtig ist beim Wechsel der Koordinaten auch der Wechsel des Volumenelements:$$dV=dx\,dy\,dz=r\,dr\,d\varphi\,dz$$Damit ist nun:$$V=\int\limits_0^2 r\,dr\underbrace{\int\limits_0^{2\pi}d\varphi}_{=2\pi}\underbrace{\int\limits_0^{4-r^2}dz}_{=4-r^2}=2\pi\int\limits_0^2r(4-r^2)dr=2\pi\int\limits_0^2(4r-r^3)dr$$$$\phantom{V}=2\pi\left[2r^2-\frac{r^4}{4}\right]_0^2=2\pi\left(8-4\right)=8\pi$$