Aufgabe:
ich beschäftige mich momentan mit einem kontinuierlichen stochastischen Prozess. Ich habe bereits bewiesen/verstanden, dass \frac{d}{dt} E(X_t) = 0 ist, also dass der Erwartungswert des stochastischen Prozesses konstant bleibt. Im Skript wird nun gefolgert, dass damit auch E(X_t|X_{t'} ) = X_t' gilt, sofern t > t' >= 0 gilt. Wie kommt es zu dieser Folgerung? Wie kann man die Martingaleigenschaft für einen kontinuierlichen Prozess anschaulich interpretieren?