Ich soll die zuoberst genannte Gleichung vereinfachen, und komme auf die zweitunterste Gleichung. Richtig wäre die Gleichung ganz unten. Wo liegt mein Fehler?
\( y^{\prime}=\frac{1}{2} \frac{-6 x \sqrt{4 x-x^{2}}-\left(4-3 x^{2}\right) \frac{4-3 x^{2}}{2 \sqrt{4 x-x^{2}}}}{4 x-x^{2}} \)
\( y^{\prime}=\frac{-6 x \sqrt{4 x-x^{2}}}{2\left(4 x-x^{2}\right)}-\frac{\left(4-3 x^{2}\right) \frac{4-3 x^{2}}{2 \sqrt{4 x-x^{2}}}}{2\left(4 x-x^{3}\right)} \)
\( y^{\prime}=\frac{-6 x \sqrt{4 x-x^{2}}}{2\left(4 x-x^{2}\right)}-\frac{\left(4-3 x^{2}\right)\left(4-3 x^{2}\right)}{2\left(4 x-x^{3}\right) 2 \sqrt{4 x-x^{3}}} \)
\( y^{\prime}=\frac{-12 x\left(4 x-x^{3}\right)}{4\left(4 x-x^{2}\right) \sqrt{4 x-x^{2}}}-\frac{\left(4-3 x^{2}\right)\left(4-3 x^{2}\right)}{4\left(4 x-x^{2}\right) \sqrt{4 x-x^{2}}} \)
\( y^{\prime}=\frac{-12 x\left(4 x-x^{2}\right)-\left(4-3 x^{2}\right)\left(4-3 x^{2}\right)}{4\left(4 x-x^{3}\right) \sqrt{4 x-x^{2}}} \)
\( y^{\prime}=\frac{\left(-48 x^{2}+12 x^{4}\right)-\left(16-24 x^{2}+9 x^{4}\right)}{4\left(4 x-x^{2}\right) \sqrt{4 x-x^{2}}} \)
\( y^{\prime}=\frac{3 x^{4}+24 x^{2}-16}{4\left(4 x-x^{2}\right)^{3 / 2}} \)
\( y^{\prime}=\frac{-3 x^{4}+24 x^{2}+16}{4\left(4 x-x^{3}\right)^{3 / 2}} \)