Die Zahl \( n \) sei in Ihrer Oktaldarstellung \( a_{k} a_{k_{1}} \ldots . a_{0} \) mit Ziffern \( a_{k} \ldots \ldots a_{0} \in\{0 \ldots \ldots .7\} \). d.h. \( n=\sum \limits_{i=0}^{k} a_{i} \cdot 8^{i} \) Beweisen Sie:
\( n \) ist genau dann durch 9 teilbar, wenn die alternierende Quersumme \( \sum \limits_{i=0}^{k}(-1)^{i} a_{i} \) durch 9 teilbar ist.
Ich hoffe ihr könnt mir helfen.
Für Ansätze sowie Lösungen zur Kontrolle wäre ich sehr dankbar :)