Aloha :)
$$\frac{|x+y|}{1+|x+y|}=\frac{1+|x+y|-1}{1+|x+y|}=1-\frac{1}{1+|x+y|}\le1-\frac{1}{1+|x|+|y|}=\cdots$$Im letzten Schritt wurde der Nenner durch Anwendung der Dreieckungleichung \(|x+y|\le|x|+|y|\) vergrößert (oder gleich gelassen). Dadurch wurde der Bruch verkleinert (oder gleich gelassen), sodass von der \(1\) weniger (oder gleich viel) subtrahiert wird. Jetzt rechnet man weiter:$$\cdots=\frac{1+|x|+|y|}{1+|x|+|y|}-\frac{1}{1+|x|+|y|}=\frac{|x|+|y|}{1+|x|+|y|}$$Damit ist die linke Seite der Ungleichungskette gezeigt.
Die rechte Seite geht schneller:$$\frac{|x|+|y|}{1+|x|+|y|}=\frac{|x|}{1+|x|+|y|}+\frac{|y|}{1+|x|+|y|}=\cdots$$Wir verkleinern beide Nenner durch Weglassen eines positiven Beitrags (oder lassen sie ungeändert). Dadurch werden beiden Brüche größer (oder bleiben gleich). Wir rechnen weiter:$$\cdots\le\frac{|x|}{1+|x|}+\frac{|y|}{1+|y|}$$Damit ist auch die rechte Seite der Ungleichungskette gezeigt.