Aufgabe:
Aufgabe \( 1(6 \text { Punkte }) \) Zeigen Sie, dass die Funktion \( f: \mathbb{R}^{2} \rightarrow \mathbb{R} \)
$$ \left(x_{1}, x_{2}\right) \mapsto\left\{\begin{array}{cc} \frac{x_{1} x_{2}^{3}}{x_{1}^{2}+x_{2}^{2}} & \text { falls }\left(x_{1}, x_{2}\right) \neq(0,0) \\ 0, & \text { falls }\left(x_{1}, x_{2}\right)=(0,0) \end{array}\right. $$
stetig und zweimal partiell differenzierbar ist. Berechnen Sie den Gradienten von \( f \) und
$$ \text { zeigen Sie: } D_{1} D_{2} f(0,0) \neq D_{2} D_{1} f(0,0) $$
Problem/Ansatz:
Ich habe nur das Problem zu berechnen, warum hier \[\text { zeigen Sie: } D_{1} D_{2} f(0,0) \neq D_{2} D_{1} f(0,0)\] gelten sollte. Denn ich hab das ausgerechnet und da kommen bei beiden die 0 raus. Mache ich hier etwas falsch ? Ich brauche hier nur ein Kontrollwert, wo ich meins abgleichen kann. Alles andere sollte ich haben. Wenn richtig.