Hallo,
sei $$ f: \mathbb{R}^2\to \mathbb{R}, (x,y)\mapsto \begin{cases}\frac{x^2y}{x^2+y^2}, \text{ falls } (x,y)\neq (0,0) \\ 0\quad \quad , \text{ falls } (x,y)=(0,0)\end{cases}$$ Erstmal ist \(f\) stetig, da \(|f(x,y)|\leq |y|\) auf \(\mathbb{R}^2\).
Für \(v=(v_1,v_2)\) mit \(||v||=1\) gilt zudem:$$\partial_v f(0,0)=\lim\limits_{t\to 0}\frac{f((0,0)+tv)-f(0,0)}{t}=\lim\limits_{t\to 0}\frac{f(tv_1,tv_2)}{t}=\lim\limits_{t\to 0}\frac{\frac{t^3v_1^2v_2}{t^2(v_1^2+v_2^2)}}{t} \\ =\lim\limits_{t\to 0}\frac{tv_1^2v_2}{t(v_1^2+v_2^2)} =\lim\limits_{t\to 0}\frac{v_1^2v_2}{||v||^2}=\lim\limits_{t\to 0}v_1^2v_2=v_1^2v_2$$