Moin moin, zerbreche mir gerade mein Kopf mit dieser Aufgabe:
Es beschreibe \( \left(X_{n}\right) \) die Folge identisch unabhängig verteilter Zufallsvariablen des fairen sechsseitigen Würfelns. Bestimmen Sie
(1) mit Hilfe der Tschebyscheff- Ungleichung
(2) mit Hilfe der Hoeffding-Schranke
eine Abschätzung für die Anzahl der Würfe \( N \in \mathbb{N} \), die mindestens benötigt werden, damit die Wahrscheinlichkeit für das Ereignis \( \left\{N^{-1} \sum \limits_{k=1}^{N} X_{k}<4,6\right\} \) größer als 0,95 ist.
Weiß jemand, wie das geht?