f(x, y) = x·y·e^(-1/2·(x^2+y^2))
Gradient
f'(x, y) = [y·e^(- x^2/2 - y^2/2)·(x + 1)·(1 - x), x·e^(- x^2/2 - y^2/2)·(y + 1)·(1 - y)]
--> Kritische Stellen (x = -1 ∧ y = -1) ∨ (x = -1 ∧ y = 1) ∨ (x = 1 ∧ y = -1) ∨ (x = 1 ∧ y = 1) ∨ (x = 0 ∧ y = 0)
Hesse-Matrix
f''(x, y) = [x·y·e^(- x^2/2 - y^2/2)·(x^2 - 3), e^(- x^2/2 - y^2/2)·(x + 1)·(x - 1)·(y + 1)·(y - 1); e^(- x^2/2 - y^2/2)·(x + 1)·(x - 1)·(y + 1)·(y - 1), x·y·e^(- x^2/2 - y^2/2)·(y^2 - 3)]
f''(0, 0) = [0, 1; 1, 0]
f''(-1, -1) = [- 2·e^(-1), 0; 0, - 2·e^(-1)]
f''(-1, 1) = [2·e^(-1), 0; 0, 2·e^(-1)]
f''(1, -1) = [2·e^(-1), 0; 0, 2·e^(-1)]
f''(1, 1) = [- 2·e^(-1), 0; 0, - 2·e^(-1)]