Hi, ich weiß schon, ob es sich im Folgenden um eine Norm handelt oder ncicht, allerdings fehlt es mir z.T. an Begründungen, bzw. nicht, ob meine Überlegungen so stimmen:
(a) \( \|A\|=|\operatorname{det} A|^{\frac{1}{n}} \)
(b) \( \|A\|=\left(\sum \limits_{i=1}^{n}\left(\sum \limits_{j=1}^{n}\left|a_{i j}\right|^{3}\right)^{\frac{2}{3}}\right)^{\frac{1}{2}} \)
\( (\mathrm{c})\|A\|=\max \left\{\sqrt{\lambda}: \lambda \text { ist ein Eigenwert von } A^{\top} A\right\} \)
a) Ist keine Norm--> Homogenität ist nicht gegeben
b)&c) SInd jeweils Normen--> Kann ich in b) irgendwie zeigen, dass es sich um eine p-Norm handelt? ich habe irgendwie keine Idee, wie ich hier die Normeigenschaften zeigen soll. Und bei c) Handelt es sich doch einfach um die normale Maximumsnorm, da doch die Möglichkeiten an Eigenwerte die ganzen komplexen Zahlen abdecken müsste, oder?
MfG