Hallo,
Wenn Du eine Abbildung vorliegen hast, die mindestens zwei Punkte \(\{A,\, B, \dots \}\) durch eine Drehung auf \(\{A',\, B',\, \dots\}\) abbildet, dann ist der Schnittpunkt der Mittelsenkrechten der Strecken \(AA'\) und \(BB'\) der Drehpunkt \(D\).
Nun sollen Geraden gefunden werden, mit denen "nach einer Verkettung der Geradenspiegelungen die abgebildete Bewegung entsteht"
Du benötigst zwei Geraden, die durch \(D\) verlaufen und deren Winkel zueinander der halbe Drehwinkel (blau) ist. Eine einfache Lösung besteht darin, für die erste Spiegelung die Gerade \(a\) zu wählen,die durch \(D\) und \(A\) verläuft und als zweite die Mittelsenkrechte \(m\) der Strecke \(AA'\). Die beiden Spiegelungen sind dann \(s_a\) und \(s_m\).
Man kann sich leicht überlegen, dass \(A\) durch \(s_m(s_a(A)) = A'\) auf \(A'\) abgebildet wird. Daselbe geschieht mit \(B\), wie im Bild oben durch die gelben gestrichelten Strecken zu sehen ist.
Eine Möglichkeit für das gesuchte Geradenpaar ist also \(a\) und \(m\) (beide lila).