Es ist
\(\small \left(\begin{array}{rrrr}\lambda=&-1&\left(\begin{array}{rrr}4&0&0\\0&0&0\\1&-4&4\\\end{array}\right)&\left(\begin{array}{r}x1\\x2\\x3\\\end{array}\right) = 0\\\lambda=&3&\left(\begin{array}{rrr}0&0&0\\0&-4&0\\1&-4&0\\\end{array}\right)&\left(\begin{array}{r}x1\\x2\\x3\\\end{array}\right) = 0\\\end{array}\right)\)
Also jeweils DimEigenraum =1 aber λ=3 doppelt (alg.Vielfachheit=2)
das heißt Hauptvektorsuche λ=3
\(\small (A - \lambda E)^2 \, := \, \left(\begin{array}{rrr}0&0&0\\0&16&0\\0&16&0\\\end{array}\right)\)
===>
\(\small HVKandidaten \, := \, \left(\begin{array}{rr}1&0\\0&0\\0&1\\\end{array}\right)\)
===>
HV2= HVKandidaten(1) ∉ Kern (A-λ E)
HV1= (A-λ E) (1,0,0)^T =(0,0,1)^T
===>
\(\small T \, := \, \left(\begin{array}{rrr}0&0&1\\1&0&0\\1&1&0\\\end{array}\right)\)
===>
\(\small T^{-1} A \;T=D \, := \, \left(\begin{array}{rrr}-1&0&0\\0&3&1\\0&0&3\\\end{array}\right)\)