versteht ihr vielleicht folgende Umformung:
$$\beta^{'}_{t-1}B_{t}+<\alpha^{'}_{t-1},/S_{t}>=\beta_{t-1}B_{t}-V_{0}^{\phi}B_{t}+<\alpha^{'}_{t-1},/S_{t}>$$
Sei \( \varphi=(\alpha, \beta) \) mit \( \alpha=\left(\alpha_{0}, \ldots, \alpha_{T-1}\right) \) und \( \beta=\left(\beta_{0}, \ldots, \beta_{T-1}\right) \) ein Free Lunch. Für \( t=0, \ldots, T-1 \) sei
$$ \alpha_{t}^{\prime}:=\alpha_{t} \quad \text { und } \quad \beta_{t}^{\prime}:=\beta_{t}-V_{0}^{\varphi} $$
Dann bleibt die Handelsstrategie \( \varphi^{\prime}=\left(\alpha^{\prime}, \beta^{\prime}\right) \) selbstfinanzierend, denn für \( t=1, \ldots, T-1 \) gilt
$$ \begin{aligned} \beta_{t-1}^{\prime} B_{t}+\left\langle\alpha_{t-1}^{\prime}, S_{t}\right\rangle &=\beta_{t-1} B_{t}-V_{0}^{\varphi} B_{t}+\left\langle\alpha_{t-1}, S_{t}\right\rangle \\ &=\beta_{t} B_{t}-V_{0}^{\varphi} B_{t}+\left\langle\alpha_{t}, S_{t}\right\rangle \\ &=\beta_{t}^{\prime} B_{t}+\left\langle\alpha_{t}^{\prime}, S_{t}\right\rangle \end{aligned} $$
aus diesem Zusammenhang:
Sei \( \varphi=(\alpha, \beta) \) mit \( \alpha=\left(\alpha_{0}, \ldots, \alpha_{T-1}\right) \) und \( \beta=\left(\beta_{0}, \ldots, \beta_{T-1}\right) \) ein Free Lunch. Für \( t=0, \ldots, T-1 \) sei
$$ \alpha_{t}^{\prime}:=\alpha_{t} \quad \text { und } \quad \beta_{t}^{\prime}:=\beta_{t}-V_{0}^{\varphi} $$
Dann bleibt die Handelsstrategie \( \varphi^{\prime}=\left(\alpha^{\prime}, \beta^{\prime}\right) \) selbstfinanzierend, denn für \( t=1, \ldots, T-1 \) gilt
$$ \begin{aligned} & \beta_{t-1}^{\prime} B_{t}+\left\langle\alpha_{t-1}^{\prime}, S_{t}\right\rangle=\beta_{t-1} B_{t}-V_{0}^{\varphi} B_{t}+\left\langle\alpha_{t-1}, S_{t}\right\rangle \\ &=\beta_{t} B_{t}-V_{0}^{\varphi} B_{t}+\left\langle\alpha_{t}, S_{t}\right\rangle \\ &=\beta_{t}^{\prime} B_{t}+\left\langle\alpha_{t}^{\prime}, S_{t}\right\rangle \end{aligned} $$
Es wäre sehr nett, wenn ihr mir helfen könntet
VG