Aloha :)
Erzeugendensystems sind nicht eindeutig. Daher gibt es nicht "das" Erzeugendensystem finden, sondern nur "ein" Erzeugendensystem. Zur Bestimmung schauen wir zunächst, ob wir die Basisvektoren des \(\mathbb R^3\) durch die gegebenen Vektoren \(\vec v\) und \(\vec z\) darstellen können. Anschließend ermitteln wir, ob eventuell ein Vektor zu \(\vec v\) und \(\vec z\) ergänzt werden muss. Das Problem hierbei ist, dass die Vektoren \(\vec v\) und \(\vec z\) nur 2-dimensional angegeben sind. Daher gehe ich mal davon aus, dass ihre dritte Komponente \(0\) ist.
$$\begin{pmatrix}1\\0\\0\end{pmatrix}=\begin{pmatrix}1\\3\\0\end{pmatrix}+\frac{1}{2}\begin{pmatrix}0\\-6\\0\end{pmatrix}=\vec v+\frac{1}{2}\vec z\quad\checkmark$$$$\begin{pmatrix}0\\1\\0\end{pmatrix}=-\frac{1}{6}\begin{pmatrix}0\\-6\\0\end{pmatrix}=-\frac{1}{6}\vec z\quad\checkmark$$$$\begin{pmatrix}0\\0\\1\end{pmatrix}\stackrel{?}{=}a\begin{pmatrix}1\\3\\0\end{pmatrix}+b\begin{pmatrix}0\\-6\\0\end{pmatrix}\quad\text{Problem!}$$Den letzten Basisvektor des \(\mathbb R^3\) können wir nicht aus den Vektoren \(\vec v\) und \(\vec z\) zusammenbauen, weil es keine Werte für \(a\) und \(b\) gibt, die die dritte Koordinatengleichung erfüllen:$$1\stackrel{?}{=}a\cdot0+b\cdot0=0\quad\text{Widerspruch}$$Wir können das heilen, indem wir zu \(\vec v\) und \(\vec z\) den Vektor \(\vec w=(0;0;1)\) ergänzen.