Grundlagen und App
https://www.geogebra.org/m/upUZg79r
\(\small |A{-\lambda}E| \, := \,\left| \left(\begin{array}{rrr}-\lambda+ 1&2&3\\2&-\lambda+ 2&2\\3&2&-\lambda+ 1\\\end{array}\right)\right|=0\ ⇒ -\lambda\; \left(\lambda+ 2 \right) \; \left(\lambda- 6 \right) = 0\)
\(\small \left(\begin{array}{rrrr}\lambda=&-2&\left(\begin{array}{rrr}3&2&3\\2&4&2\\3&2&3\\\end{array}\right)&\left(\begin{array}{r}x1\\x2\\x3\\\end{array}\right) = 0\\\lambda=&0&\left(\begin{array}{rrr}1&2&3\\2&2&2\\3&2&1\\\end{array}\right)&\left(\begin{array}{r}x1\\x2\\x3\\\end{array}\right) = 0\\\lambda=&6&\left(\begin{array}{rrr}-5&2&3\\2&-4&2\\3&2&-5\\\end{array}\right)&\left(\begin{array}{r}x1\\x2\\x3\\\end{array}\right) = 0\\\end{array}\right)\)
===>
\(\small \left(\begin{array}{r}x1\\x2\\x3\\\end{array}\right) = \left(\begin{array}{rrr}-x3&x3&x3\\0&-2 \; x3&x3\\x3&x3&x3\\\end{array}\right)\)
===>
\(\small T \, := \, \left(\begin{array}{rrr}-1&1&1\\0&-2&1\\1&1&1\\\end{array}\right)\)
===>
\(\small D \, := \, T^{-1} \; A \; T = \, \left(\begin{array}{rrr}-2&0&0\\0&0&0\\0&0&6\\\end{array}\right)\)