Wir betrachten in einer Ebene die vier verschiedenen Punkte A, B, C und D, die in dieser
Reihenfolge auf einer Geraden g liegen.
Zeigen Sie:
a) Wenn für jeden Punkt P auf g die Ungleichung
|AP| + |DP| ≥ |BP| + |CP|
gilt, dann ist |AB| = |CD|.
b) Wenn für jeden Punkt P der Ebene, der nicht auf g liegt, die Ungleichung
|AP| + |DP| > |BP| + |CP|
gilt, dann ist |AB| = |CD|.
Problem/Ansatz:
Ich habe mir eine gerad g. gezeichnet um mir das bildlich vorstellen zu können. Meiner Meinung nach, ist die Ungleichung nicht möglich. bin mir aber total unsicher, da oben in der Frage etwas von einer Ebene steht. Eine Gerade ist nicht zwangsläufig eine Ebene?