Bedingung Maximum f´(x)=0 und f´´(x)<0
Bedingung Minimum f´(x)=0 und f´´(x)>0
Bedingung Wendepunkt f´´(x)=0 und f´´´(x)≠0
Bedingung Sattelpunkt f´´(x)=0 und f´´´(x)≠0 und f´(x)=0
Infos,vergrößern und/oder herunterladen
Text erkannt:
Kurvendiskusaion \( f^{\prime}(x)=0 \quad \) and \( f^{\prime}:(x) \)
$$ \text { NULL } f^{\prime}(x)-0 $$
Hinweis: Der "Sattelpunkt" (Terrassenpunkt oder STufenpunkt) \( 13 \mathrm{t} \) ein besonderer Wendepunkt, bel dem die Tangentenstetgung NULL Ist.
$$ f^{*}(x)=m=0 $$
Der "Wendepunkt" trennt 2 Kurvenboren, "konkav" und "konvex" Krummung "k" aus dem Mathe-Pormel buch, Kapitel, "Differentialgeometrie". Forme \( 1 \quad k=y^{\prime} \cdot \nu\left(1+\left(y^{\prime}\right)^{2}\right)^{(3 / 2)} \)
\( k<0 \) konvex (Rechtskrumung) von oben gesehen \( k>0 \) konkav (Linkskrumang) von oben gesehen
\( y^{\prime}-f^{\prime}(x) \) ist die \( 1 . \) te
$$ y=f(x)=\ldots $$
Parabel
$$ f(x)=a 2 * x^{2}+a 1 * x+a o $$
\( f^{\prime}(x)=2^{*} a 2^{*} x+a 1 \)
\( f^{\prime} \cdot(x)=2^{*} a 2 \quad \) hat somit "kelnen Wendepunkt \( ^{\prime \prime} \)
kubische Punktion \( f(x)=a 3 * x^{3}+a 2 \cdot x^{2}+a 1 * x+a \)
\( f^{\prime \prime} \cdot "(x)=6^{*} a^{3} \)
biguadratische Punktion Diese Funktion ergibt sich aus der "ganzrationalen Funktion \( 4 . \) Gra des" \( y=f(x)=a 4^{*} x^{4}+a 3 * x^{3}+a 2 * x^{2}+a 1 * x+a o \)
Bed 1 ngung "Achssymmetrie" \( f(x)=f(-x) \) und Exponenten negerade "Punktsynetrie" \( f(x)=-1 * f(-x) \) "