Kt(x) = 0.0044·x^3 - 0.2·t·x^2 + 5·t^2·x + 100
Et(x) = 6·(t + 10)·x
Gt(x) = Et(x) - Kt(x) = 6·(t + 10)·x - (0.0044·x^3 - 0.2·t·x^2 + 5·t^2·x + 100)
Gt(x) = - 0.0044·x^3 + 0.2·t·x^2 - x·(5·t^2 - 6·t - 60) - 100
G(x) = G-2(x) = - 0.0044·x^3 + 0.2·(-2)·x^2 - x·(5·(-2)^2 - 6·(-2) - 60) - 100
G(x) = - 0.0044·x^3 - 0.4·x^2 + 28·x - 100
G'(x) = - 0.0132·x^2 - 0.8·x + 28 = 0 --> x = 24.83 ME