Mit der Aufgabenstellung komme ich nich klar.Ich weiß nicht,wie diese Konstrucktion im 3-dimensionalen-Raum aussieht
Ein Parallelogramm Flächenberechnung mit dem Vektorprodukt (Kreuzprodukt) a kreuz b=c
Dir Fläche des Parallelogramms ist dann Betrag |c|=Wurzel(cx²+cy²+cz²)
Hinweis:Ein Paralleogramm entsteht,wenn man ein Dreieck um eine Seite spiegelt.
Fläche von einen beliebigen Dreieck dann A=1/2*|a kreuz b|
wir nehmen P(0/0/0) als Stützpunkt (Stützvektor) P1(0/0/0) und P2(5/10/0) ergibt a(5/10/0) ist der Richtungvektor von P1(0/0/0) nach P2(5/10/0)
nun brauchst du noch einen Richtungsvektor von P1(0/0/0) nach Punkt C(cx/cy/cz).Das ist dann der 2.te Richtungsvekto b(bx/by/bz)
nun kannst du die Fläche dieses Dreiecks berechnen P1(0/0/0),P2(5/10/0) nach C(cx/cy/cz)
A=1/2*|a kreuz b|