Die Definition des Grenzwerts einer Folge ist:
Eine Folge \((a_n)_{n\in N}\) besitzt einen Grenzwert \(A\), wenn es zu jedem \(\varepsilon >0\) einen Folgeindex \(N(\varepsilon)\in\mathbb{N}\) gibt, sodass für alle Folgeglieder \(a_n\) mit \(n\geq N(\varepsilon)\) die Ungleichung \(\lvert a_n-A\rvert < \varepsilon\) erfüllt ist. Es ist also genau dann \(A\) ein Grenzwert von \((a_n)_{n\in\mathbb{N}}\), wenn gilt: $$\forall \varepsilon >0 \quad\exists N(\varepsilon)\in\mathbb{N} \quad\forall n\geq N(\varepsilon) \;: \;\lvert a_n-A\rvert <\varepsilon.$$
Die Definition besagt also, dass \(A\) ein Grenzwert ist, wenn für jedes Epsilon größer 0 eine Zahl \(N(\varepsilon)\) gefunden werden kann, sodass für alle \(n>N(\varepsilon)\) dann \(\lvert a_n-A\rvert<\varepsilon \) ist. Wir müssen also zeigen, dass für jedes noch so kleine Epsilon immer ein \(N(\varepsilon)\) gefunden wird, sodass alle Folgeglieder ab \(N(\varepsilon)\) in dem Intervall \((A+\varepsilon, \quad A-\varepsilon)\) liegen.
Aufgabe 1:$$\begin{aligned}\left\lvert \frac{4n^2+n+1}{2n^2+1}-2\right\rvert &= \frac{4n^2+n+1}{2n^2+1}-\frac{2(2n^2+1)}{2n^2+1}\\&=\frac{4n^2+n+1-4n^2-2}{2n^2+1}\\&=\frac{n-1}{2n^2+1}\\&<\frac{n-1}{n^2-1}\\&=\frac{n-1}{(n-1)(n+1)}\\ &= \frac{1}{n+1}\end{aligned}$$ Also muss wegen \(\lvert a_n-A\rvert <\varepsilon\) gelten: $$\frac{1}{n+1}< \varepsilon\iff n> \frac{1}{\varepsilon}-1 .$$ Beweis: Sei \(N(\varepsilon)=\lfloor (1/\varepsilon)-1\rfloor\; (*)\). Folglich existiert für alle \(\varepsilon>0\) ein \(N(\varepsilon)=\lfloor (1/\varepsilon)-1\rfloor\) mit \(\forall n> N(\varepsilon)\) mit $$\frac{4n^2+n+1}{2n^2+1}<\frac{1}{n+1}<\frac{1}{N(\varepsilon)+1}<\frac{1}{1/\varepsilon}=\varepsilon .$$ Demnach haben wir für jedes \(\varepsilon\) ein \(N(\varepsilon)\) gefunden, sodass für \(n\geq N(\varepsilon)\) dann \(\lvert a_n-A\rvert<\varepsilon\) gilt. \(A=2\) ist also der gesuchte Grenzwert. \(\quad \square\)
Aufgabe 2:
Du sollst jetzt ein \(N(\varepsilon)\) finden, sodass alle Folgeglieder ab diesem \(N(\varepsilon)\) im Intervall \((A+1, \quad A-1)\) für \(\varepsilon=1\) und im Intervall \((A+0.1;\quad A-0,1)\) für \(\varepsilon =\frac{1}{10}\) liegen. Du kannst für \(\varepsilon\) die jeweiligen Werte einsetzen und weißt dann, wie groß \(n\) sein muss:
- Für \(\varepsilon=1\) gilt wegen \((*)\): \(N(1)=\lfloor 1/1-1\rfloor=0<n\), also ab dem ersten Folgeglied befinden sich alle Folgeglieder in dem Intervall \((2+1, \quad 2-1)\).
- Für \(\varepsilon=1/10\) gilt wegen \((*)\): \(N(1/10)=\lfloor 1/(1/10)-1\rfloor=10-1=9<n\), also insbesondere ab dem 10. Folgeglied variieren die Folgeglieder nur noch zwischen \((2+0,1; \quad 2-0,1)\).