0 Daumen
589 Aufrufe

Aufgabe:

Die Produktionsfunktion eines Herstellers laute

F(x1,x2)=6x2/1+79x1x2+20x2/2
Man bestimme die optimale Faktorkombination zu den Faktorpreisen 79 und 84, wenn ein Produktionsniveau von 4480 erzielt werden soll.

Wie hoch ist der Einsatz von Faktor x2?


Problem/Ansatz:

Ich habe das x2 und das x1 ausgerechnet und bekommen für x1:5,13 und für x2:7,72 raus. Wenn ich die Kontrolle mache stimmt mir das Ergebnis nicht zusammen. Kann mir vielleicht jemand weiter herlfen?

Avatar von

F(x1,x2) = 6x2/1+ 79x1x2+ 20x2/2

So stimmt die Funktion sicherlich nicht
So sicherlich auch nicht
F(x1,x2) = 6 * x2 /1  + 79 *x1 * x2 + 20 *x2 /2

1 Antwort

0 Daumen

Unbenannt.PNG

Text erkannt:

\( F(x, y)=6 x^{2}+79 \cdot x \cdot y+20 y^{2} \)
\( 79 x+84 y=4480 \rightarrow y=-\frac{79}{84} x+\frac{160}{3} \)
\( F(x)=6 x^{2}+79 \cdot x \cdot\left(-\frac{79}{84} x+\frac{160}{3}\right)+20 \cdot\left(-\frac{79}{84} x+\frac{160}{3}\right)^{2} \)
\( \frac{d F(x)}{d x}=\ldots \)
\( \frac{d F(x)}{d x}=0 \)
\( y=\ldots \)
\( F=\ldots \)
\( \mathrm{mfG} \)
Moliets

Avatar von 41 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community