Aloha :)
Die Kostenfunktion \(k\) soll unter der konstanten Nebenbedingung \(f\) optimiert werden:$$k(x;y)=77x+94y\quad;\quad f(x;y)=12x^2+62xy+9y^2\stackrel!=5903$$
Nach Lagrange muss im Extremum der Gradient der zu optimierenden Funktion eine Linearkombination der Gradienten aller konstanten Nebenbedingungen sein. Da es hier nur eine Nebenbedingung gibt, lautet die Lagrange-Forderung:$$\operatorname{grad}k(x;y)=\lambda\cdot\operatorname{grad}f(x;y)\implies\binom{77}{94}=\lambda\binom{24x+62y}{62x+18y}$$Die beiden Gradienten müssen kollinear zueinander sein, das ist genau dann der Fall, wenn sie keine Ebene aufspannen bzw. wenn ihre Determinante verschwindet:$$0\stackrel!=\operatorname{det}\begin{pmatrix}77 & 24x+62y\\94 & 62x+18y\end{pmatrix}=77(62x+18y)-94(24x+62y)=2518x-4442y\implies$$$$y=\frac{2518}{4442}\,x=\frac{1259}{2221}\,x$$
[Einschub]
Wenn ihr noch keine Determinanten hattet, kannst du den Lagrange-Multiplikator \(\lambda\) auch loswerden, indem du die Gleichung der 1-ten Koordinate durch die der zweiten Koordinate dividierst:$$\frac{77}{94}=\frac{\lambda\cdot(24x+62y)}{\lambda\cdot(62x+18y)}=\frac{12x+31y}{31x+9y}\implies\cdots$$Du erhältst dann natürlich dasselbe Verhältnis wie mit der Determinanten-Methode.
[Einschub Ende]
Diese Lagrange-Forderung setzen wir in die Nebenbedingung ein:$$5903\stackrel!=12x^2+62x\cdot\frac{1259}{2221}\,x+9\left(\frac{1259}{2221}\,x\right)^2\approx50,03742042\,x^2$$Da nur \(x\ge0\) sinnvoll ist, erhalten wir als Lösung:$$x\approx\pm\sqrt{\frac{5903}{50,03742042}}\approx10,861478\quad;\quad y=\frac{2518}{4442}\,x\approx6,1569568$$