0 Daumen
204 Aufrufe

Aufgabe: 1. Gegeben seien die Mengen

A = {n £ N : n > 3).

B = {n £ N : n ist durch 14 teilbar).

C = { n £ N : n > 5, n ist durch 7 teilbar und gerade)

Beweisen oder Widerlegen Sie: (a) A<gleich B, (b) B<gleich A, (c) C<gleich A, (d) B = C


Problem/Ansatz:

Ich verstehe nicht ganz wie man das mathematisch korrekt aufschreiben soll, da ich es nie von der Schule so kannte. Ich hab's bspw. so gemacht, dass ich mir die einzelnen Elemente und ihre Eigenschaften der jeweiligen Menge angeschaut habe und diese miteinander verglichen habe. Dabei kam raus, (a) ist falsch, (b) ist korrekt (c) ist ebenfalls korrekt und (d) ist richtig, weil:

Antwort Beispiel:

A = {4, 5, 6, 7,... 14,... 28,... 42,... 56,...}

B = {14,28,42,56...}

C = {14,28,42,56...}

Ja und dann habe ich halt eher Sätze geschrieben, A<gleich B: A ist keine Teilmenge von B

B<gleich A: B ist in A enthalten, aber A hat mehr Elemente, also ja Teilmenge usw.

Wie schreibt man das aber mathematisch korrekt auf, dass man's auch selbst versteht? Idee: den Allquantor nehmen und dann eine Verallgemeinerung aufschreiben, aber keine Ahnung wie...

Avatar von

1 Antwort

0 Daumen

Teilemenge schreibt man eher so A ⊆ B

Die Aussage ist falsch und das begründest du am besten mit

einem konkreten Gegenbeispiel, etwa so:

Es gilt 4 ∈ A weil 4>3  aber

      4 ∈ B weil 4 nicht durch 14 teilbar ist.

b) entsprechend

c)  C ⊆ A ist wahr; denn die Elemente von C sind ja alle größer

als 5, also auch größer als 3.

etc.

Avatar von 289 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community