mir liegt folgende Aufgabe vor:
(a) Es sei \( a \in \mathbb{C} \) mit Re \( a>0 . \) Bestimmen Sie das Bild der rechten Halbebene \( \{z \in \mathbb{C}: \) Re \( z>0\} \) unter der Möbius-Transformation
\( f_{a}(z)=\frac{z-a}{z+\bar{a}} \)
(b) Es sei \( b \in \mathbb{C} \) mit \( |b|<1 . \) Benutzen Sie Teil (a) um eine Möbius-Transformation \( f \) zu finden, die den Einheitskreis auf sich selbst abbildet, und den Punkt \( b \) auf den Ursprung.
Kann mir jemand helfen, wie man dies mithilfe des Möbius Transformation durchführt?