1 / (x + 2) = c / (1 - (x - 1)/d)
1·(1 - (x - 1)/d) = c·(x + 2)
1 - (x - 1)/d = c·(x + 2)
d - (x - 1) = c·d·(x + 2)
- x + d + 1 = c·d·x + 2·c·d
c·d = -1
d + 1 = 2·c·d --> d + 1 = - 2 → d = -3
c·(-3) = -1 → c = 1/3
Also
(1/3) / (1 - (x - 1)/(-3)) = 1 / (x + 2)