Hallo bitator,
wenn man die reellen Zahlen betrachtet, hast Du für die
Addition das neutrale Element 0 und die Umkehrfunktion minus von plus; so wird z.B. aus +4 -4 das neutrale Element 0.
Multiplikation das neutrale Element 1 und die Umkehrfunktion 1/ für einen beliebigen Bruch. So wird z.B. aus
5 * 1/5 das neutrale Element 1.
Wenn man nun Matrizen betrachtet, dann ist das neutrale Element die Einheitsmatrix, die bei Dir rechts vom Gleichheitszeichen steht. Und die invertierte Matrix ist sozusagen die "Umkehrfunktion" der ursprünglichen Matrix.
Man multipliziert die Matrix mit ihrer Invertierten und erhält dann das neutrale Element Einheitsmatrix.
Wir bestimmt man nun die Inverse einer Matrix?
Man schreibt die Matrix hin und daneben die zugehörige Einheitsmatrix, also eine Matrix mit gleich vielen Zeilen und Spalten und nur die Diagonale mit 1 besetzt.
Dann verwandelt man die Matrix durch elementare Zeilenumformungen schrittweise in die Einheitsmatrix und führt exakt die gleichen Schritte mit der rechts stehenden Einheitsmatrix durch. Wenn Du schließlich links die Einheitsmatrix stehen hast, hat sich auf der rechten Seite die Einheitsmatrix in die Inverse der Ursprungsmatrix verwandelt.
Besten Gruß