Aufgabe:
◦ δ0 δ1 δ2 σ0 σ1 σ2
δ0 δ0 δ1 δ2 σ0 σ1 σ2
δ1 δ1 δ2 δ0 σ2 σ0 σ1
δ2 δ2 δ0 δ1 σ1 σ2 σ0
σ0 σ0 σ1 σ2 δ0 δ1 δ2
σ1 σ1 σ2 σ0 δ2 δ0 δ1
σ2 σ2 σ0 σ1 δ1 δ2 δ0
Die Funktionen δ0, δ1, δ2, σ0, σ1 und σ2 auf der Menge {0, 1, 2} sind durch
die folgende Wertetabelle gegeben:
x δ0(x) δ1(x) δ2(x) σ0(x) σ1(x) σ2(x)
0 0 1 2 0 2 1
1 1 2 0 2 1 0
2 2 0 1 1 0 2
(a) Geben Sie das neutrale Element der Gruppe (S({0, 1, 2}), ◦) an, und füllen Sie die
folgende Tabelle zur Inversenabbildung der Gruppe (S({0, 1, 2}), ◦) aus.
f δ0 δ1 δ2 σ0 σ1 σ2
f^-1
(b) Geben Sie alle Untergruppen der Gruppe (S({0, 1, 2}), ◦) an.
(c) Geben Sie alle Normalteiler der Gruppe (S({0, 1, 2}), ◦) an
Könnte jemand mir bitte die Lösung geben bzw. den Lösungsweg?