Partielle Integration
∫ g·√(1 - g) dg = g·(- 2/3·(1 - g)^(3/2)) - ∫ 1·(- 2/3·(1 - g)^(3/2)) dg
∫ g·√(1 - g) dg = - 2/3·g·(1 - g)^(3/2) - 4/15·(1 - g)^(5/2) + C
Integration durch Ansatz und Koeffizientenvergleich.
F(g) = e^g·(a·g^3 + b·g^2 + c·g + d)
F'(g) = e^g·(a·g^3 + g^2·(3·a + b) + g·(2·b + c) + (c + d))
a = 1
3·a + b = 0
2·b + c = 0
c + d = 0 --> a = 1 ∧ b = -3 ∧ c = 6 ∧ d = -6
F(g) = e^g·(g^3 - 3·g^2 + 6·g - 6)