Aloha :)
Ich denke, du sollst jeweils einen Vektor \(x\) für alle(!) drei Vektoren aus \(B\) finden. Daher würde ich das Gleichungssystem erstmal allgemein lösen:
$$\begin{array}{rrrrrcl}x_1 & x_2 & x_3 & x_4 & = && \text{Aktion}\\\hline1 & 1 & -1 & 1 & b_1 &&\\2 & -8 & 3 & 7 & b_2 && -2\cdot\text{Zeile 1}\\6 & -4 & -1 & 11 & b_3 && -6\cdot\text{Zeile 1}\\\hline1 & 1 & -1 & 1 & b_1 &&\\0 & -10 & 5 & 5 & b_2-2b_1 && :\,(-10) \\0 & -10 & 5 & 5 & b_3-6b_1 && -\text{Zeile 2} \\\hline1 & 1 & -1 & 1 & b_1 && -\text{Zeile 2}\\0 & 1 & -\frac{1}{2} & -\frac{1}{2} & 0,2b_1-0,1b_2 && \\0 & 0 & 0 & 0 & b_3-b_2-4b_1 && \\\hline1 & 0 & -\frac{1}{2} & \frac{3}{2} & 0,8b_1+0,1b_2 && \\0 & 1 & -\frac{1}{2} & -\frac{1}{2} & 0,2b_1-0,1b_2 && \\0 & 0 & 0 & 0 & b_3-b_2-4b_1 &&\\\hline\hline\end{array}$$
Vektor 1: \(\vec b=\begin{pmatrix}0\\0\\0\end{pmatrix}\)
Die Ergebnis-Spalte wird vollständig zu null:$$\begin{array}{rrrrr}x_1 & x_2 & x_3 & x_4 & = \\\hline1 & 0 & -\frac{1}{2} & \frac{3}{2} & 0 \\0 & 1 & -\frac{1}{2} & -\frac{1}{2} & 0 \\0 & 0 & 0 & 0 & 0\end{array}$$Wir lesen daraus ab:
$$x_1-\frac{1}{2}x_3+\frac{3}{2}x_4=0\quad\implies\quad x_1=\frac{1}{2}x_3-\frac{3}{2}x_4$$$$x_2-\frac{1}{2}x_3-\frac{1}{2}x_4=0\quad\implies\quad x_2=\frac{1}{2}x_3+\frac{1}{2}x_4$$Damit haben wir alle Lösungen gefunden:
$$\vec x=\begin{pmatrix}x_1\\x_2\\x_3\\x_4\end{pmatrix}=\begin{pmatrix}\frac{1}{2}x_3-\frac{3}{2}x_4\\\frac{1}{2}x_3+\frac{1}{2}x_4\\x_3\\x_4\end{pmatrix}=\frac{x_3}{2}\begin{pmatrix}1\\1\\2\\0\end{pmatrix}+\frac{x_4}{2}\begin{pmatrix}-3\\1\\0\\2\end{pmatrix}$$Setzen wir noch \(s\coloneqq\frac{x_3}{2}\) und \(t\coloneqq\frac{x_4}{2}\) haben wir eine Ebenengleichung als Lösung:
$$\vec x=s\begin{pmatrix}1\\1\\2\\0\end{pmatrix}+t\begin{pmatrix}-3\\1\\0\\2\end{pmatrix}$$
Vektor 2: \(\vec b=\begin{pmatrix}6\\-13\\11\end{pmatrix}\)
Die Ergebnis-Spalte rechnen wir aus:$$\begin{array}{rrrrr}x_1 & x_2 & x_3 & x_4 & = \\\hline1 & 0 & -\frac{1}{2} & \frac{3}{2} & 3,5 \\0 & 1 & -\frac{1}{2} & -\frac{1}{2} & 2,5 \\0 & 0 & 0 & 0 & 0\end{array}$$Wir lesen daraus ab:
$$x_1-\frac{1}{2}x_3+\frac{3}{2}x_4=\frac{7}{2}\quad\implies\quad x_1=\frac{7}{2}+\frac{1}{2}x_3-\frac{3}{2}x_4$$$$x_2-\frac{1}{2}x_3-\frac{1}{2}x_4=\frac{5}{2}\quad\implies\quad x_2=\frac{5}{2}+\frac{1}{2}x_3+\frac{1}{2}x_4$$Damit haben wir alle Lösungen gefunden:
$$\vec x=\begin{pmatrix}x_1\\x_2\\x_3\\x_4\end{pmatrix}=\begin{pmatrix}\frac{7}{2}+\frac{1}{2}x_3-\frac{3}{2}x_4\\\frac{5}{2}+\frac{1}{2}x_3+\frac{1}{2}x_4\\x_3\\x_4\end{pmatrix}=\begin{pmatrix}\frac{7}{2}\\[0.5ex]\frac{5}{2}\\[0.5ex]0\\0\end{pmatrix}+\frac{x_3}{2}\begin{pmatrix}1\\1\\2\\0\end{pmatrix}+\frac{x_4}{2}\begin{pmatrix}-3\\1\\0\\2\end{pmatrix}$$Setzen wir noch \(s\coloneqq\frac{x_3}{2}\) und \(t\coloneqq\frac{x_4}{2}\) haben wir eine Ebenengleichung als Lösung:
$$\vec x=\begin{pmatrix}3,5\\2,5\\0\\0\end{pmatrix}+s\begin{pmatrix}1\\1\\2\\0\end{pmatrix}+t\begin{pmatrix}-3\\1\\0\\2\end{pmatrix}$$
Vektor 3: \(\vec b=\begin{pmatrix}2\\1\\-8\end{pmatrix}\)
Die Ergebnis-Spalte rechnen wir aus:$$\begin{array}{rrrrr}x_1 & x_2 & x_3 & x_4 & = \\\hline1 & 0 & -\frac{1}{2} & \frac{3}{2} & 1,7 \\0 & 1 & -\frac{1}{2} & -\frac{1}{2} & 0,3 \\0 & 0 & 0 & 0 & -17\end{array}$$
Hier gibt es keine Lösung, weil die letzte Gleichung nicht erfüllt werden kann.