∫cos(4x+3)dx mit u = 4x+3 folgt du / dx = 4 also du = 4 dx
∫cos(4x+3)dx = (1/4) *∫cos(4x+3) 4 dx = (1/4) ∫cos(u) du = (1/4) * sin(u) + C
= (1/4) * sin(4x+3) + C
∫(4x+2)*(3er sqrt von (2x^2+2x-1))dx = = ∫(4x+2)*(2x^2+2x-1)^(1/3)dx
mit u = 2x^2+2x-1 du/dx = 4x + 2 also du = (4x+2) dx
Also ∫(4x+2)*(2x^2+2x-1)^(1/3)dx = = ∫ (2x^2+2x-1)^(1/3) * (4x+2)*dx
= ∫ u^(1/3) * (4x+2)*dx = ∫ u^(1/3) du = (3/4)*u^(4/3) + C
= (3/4)*( 2x^2+2x-1 )^(4/3) + C