Aloha :)
$$E(X-Y)=E(X)-E(Y)=1-(-2)=3$$
$$\operatorname{Var}(X-Y)=\operatorname{Cov}(X-Y,X-Y)$$$$\phantom{\operatorname{Var}(X-Y)}=\operatorname{Cov}(X,X)-\operatorname{Cov}(Y,X)-\operatorname{Cov}(X,Y)+\operatorname{Cov}(Y,XY)$$$$\phantom{\operatorname{Var}(X-Y)}=\operatorname{Var}(X)-2\operatorname{Cov}(X,Y)+\operatorname{Var}(Y)=3-2\cdot2+2=1$$
$$E(X\cdot Y)=E(X)\cdot E(Y)+\operatorname{Cov}(X,Y)=1\cdot(-2)+2=0$$