Aufgabe:
Sei f : [a, b] → [a, b] stetig. Zeigen Sie, dass f einen Fixpunkt hat, d.h. es gibt ein x0 ∈ [a, b]
mit f(x0) = x0.
Hinweis: Betrachten Sie die Funktion g(x) := f(x) − x. Begründen Sie zunächst, warum mit f
auch g stetig ist.
Problem/Ansatz:
g(x) ist stetig, da f(x) nach Vor. stetig ist, "-x" ist auch stetig. Außerdem gilt nach Voraussetzung (ab hier bin ich mir unsicher), dass f(a) >= a, f(b) <= b,
bzw. g(a) >= a, g(b) <= b. Nach dem Zwischenwertsatz gibt es ein x0 aus [a, b] mit g(x0)=0, also f(x0) = x0, also gibt es einen Fixpunkt. Nur war ich mir nicht sicher, ob es stimmt bzw. ob die Begründung ausreicht.