Man muss das Integral aufspalten z.B.: $$ \Gamma(x) = \int_0^1 t^{x-1}e^{-t} \textrm d t + \int_{1}^\infty t^{x-1}e^{-t} \textrm d t $$ Du schätzt nur den zweiten mit \( \frac{1}{t^2} \) ab. Beachte, dass
$$ t^{x-1} e^{-t} \le \underbrace{ \left( \max_{t\in[1,\infty)} t^{x+1}e^{-t} \right)}_{=: ~C} \frac{1}{t^2} $$