Aloha :)
a) Zu zeigen: \(((\sqrt[n]{n}-1)+1)^n\ge1+\frac{n(n-1)}{2}(\sqrt[n]{n}-1)^2\quad;\quad n\in\mathbb N\)
Für \(n=1\) ist die Behauptung klar, denn dann gilt:$$((\sqrt[n]{n}-1)+1)^n=1\quad;\quad1+\frac{n(n-1)}{2}(\sqrt[n]{n}-1)^2=1$$Für \(n\ge2\) können wir mit dem binomischen Lehrsatz:$$(a+b)^n=\sum\limits_{k=0}^n\binom{n}{k}a^kb^{n-k}$$folgende Abschätzung vornehmen:$$(\underbrace{(\sqrt[n]{n}-1)}_{=a}+\underbrace{1}_{=b})^n=\sum\limits_{k=0}^n\binom{n}{k}(\sqrt[n]{n}-1)^k\cdot1^{n-k}=\sum\limits_{k=0}^n\binom{n}{k}(\sqrt[n]{n}-1)^k$$$$\qquad\ge\binom{n}{0}(\sqrt[n]{n}-1)^0+\binom{n}{2}(\sqrt[n]{n}-1)^2=1+\frac{n(n-1)}{2}(\sqrt[n]{n}-1)^2$$Damit ist die Behauptung von oben bewiesen.
b) Der Rest ist nun einfach. Für \(n\ge2\) gilt:
$$\left.n=(\sqrt[n]{n})^n=((\sqrt[n]{n}-1)+1)^n\ge1+\frac{n(n-1)}{2}(\sqrt[n]{n}-1)^2\quad\right|-1$$$$\left.n-1\ge\frac{n(n-1)}{2}(\sqrt[n]{n}-1)^2\quad\right|:(n-1)$$$$\left.1\ge\frac{n}{2}(\sqrt[n]{n}-1)^2\quad\right|\cdot\frac{2}{n}$$$$\left.\frac{2}{n}\ge(\sqrt[n]{n}-1)^2\quad\right|\sqrt{\cdots}$$$$\left.\sqrt{\frac{2}{n}}\ge\sqrt[n]{n}-1\quad\right|+1$$$$\left.\sqrt[n]{n}\le1+\sqrt{\frac{2}{n}}\quad\right.$$Wegen \(n\ge1\) haben wir also:$$1\le\sqrt[n]{n}<1+\sqrt{\frac{2}{n}}$$Im Grenzübergang \(n\to\infty\) heißt das:$$\lim\limits_{n\to\infty}\sqrt[n]{n}=1$$