0 Daumen
195 Aufrufe

Wir betrachten \( \mathbb{R}^{2} \) als abelsche Gruppe mit komponentenweiser Addition. Überprüfen Sie, ob die folgenden Abbildungen \( \cdot: \mathbb{R} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \) die Vektorraumaxiome \( (N),(A) \) und \( (D) \) erfüllen:
(a) \( \lambda \cdot\left(\begin{array}{l}x \\ y\end{array}\right):=\left(\begin{array}{c}\lambda x \\ 0\end{array}\right) \) für alle \( \lambda \in \mathbb{R} \) und alle \( \left(\begin{array}{l}x \\ y\end{array}\right) \in \mathbb{R}^{2} \)
(b) \( \lambda \cdot\left(\begin{array}{l}x \\ y\end{array}\right):=\left(\begin{array}{l}|\lambda| x \\ |\lambda| y\end{array}\right) \) für alle \( \lambda \in \mathbb{R} \) und alle \( \left(\begin{array}{l}x \\ y\end{array}\right) \in \mathbb{R}^{2} \)

Danke :)

Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community