Aufgabe:
∫ \( \frac{x^3}{(x-4)^4} \) dx Wird im folgenden mit partieller Integration gelöst (liefert aber falsches Ergebnis)
NR.: ∫ \(\frac{1}{(x-4)^4} \) dx = \( \frac{1}{-3} \) \( \frac{1}{(x-4)^3} \)
∫ \( \frac{x^3}{(x-4)^4} \) dx u = \(x^3\) ; u' = \(3x^2\) ; v = \( \frac{-1}{3(x-4)^3} \) ; v' = \( \frac{1}{(x-4)^4} \)
∫ \( \frac{x^3}{(x-4)^4} \) dx = \( \frac{-x^3}{3(x-4)^3} \) - ∫ \( \frac{-3x^2}{3(x-4)^3} \) dx
= \( \frac{-x^3}{3(x-4)^3} \) + ∫ \( \frac{x^2}{(x-4)^3} \) dx
∫ \( \frac{x^2}{(x-4)^3} \) dx u = \(x^2\) ; u' = 2x ; v = \( \frac{-1}{2(x-4)^2} \) ; v' = \( \frac{1}{(x-4)^3} \)
∫ \( \frac{x^2}{(x-4)^3} \) dx = \( \frac{-x^2}{2(x-4)^2} \) - ∫ \( \frac{-2x}{2(x-4)^2} \) dx
= \( \frac{-x^2}{2(x-4)^2} \) + ∫ \( \frac{x}{(x-4)^2} \) dx
∫ \( \frac{x}{(x-4)^2} \) dx u = x; u' = 1; v = \( \frac{-1}{(x-4)} \) ; v' = \( \frac{1}{(x-4)^2} \)
∫ \( \frac{x}{(x-4)^2} \) dx = \( \frac{-x}{(x-4)} \) - ∫ \( \frac{-1}{(x-4)} \) dx
= \( \frac{-x}{(x-4)} \) + ∫ \( \frac{1}{(x-4)} \) dx
∫ \( \frac{1}{(x-4)} \) dx = ln(x-4)
Damit ergibt sich nach 3 partiellen Integrationen folgendes Endergebnis:
∫ \( \frac{x^3}{(x-4)^4} \) dx = \( \frac{-x^3}{3(x-4)^3} \) - \( \frac{x^2}{2(x-4)^2} \) - \( \frac{x}{(x-4)} \) + ln(x-4)
Alle anderen Integrationsmethoden inklusive Bronstein bestätigen aber folgendes Ergebnis:
∫ \( \frac{x^3}{(x-4)^4} \) dx = \( \frac{-64}{3(x-4)^3} \) - \( \frac{48}{2(x-4)^2} \) - \( \frac{12}{(x-4)} \) + ln(x-4)
Problem/Ansatz:
Hallo Gemeinschaft.
Mein Problem ist, dass ich obiges Integral eigentlich zuerst mit der partiellen Integration lösen wollte und das auch geschafft habe, doch das Ergebnis ist offensichtlich nicht korrekt (siehe meine Aufgabe mit Lösung). Ich kann das Integral auch mit der Partialbruchzerlegung und der Substitutionsmethode lösen (Substituiere z = (x-4)) und erhalte ein Ergebnis, das laut Bronstein richtig ist. Das Ergebnis steht ebenfalls dabei.
Was ich jetzt einfach nicht verstehe ist, dass ich mit der partiellen Integration ein falsches Ergebnis kriege und ich finde keinen Fehler, den ich gemacht habe. Ich denke da jetzt schon seit einiger Zeit darüber nach ... es ist ein Rätsel für mich. Ich dachte jetzt, vielleicht ist die partielle Integration bei manchen Funktionen einfach nicht anwendbar, doch ich erinnere mich einfach nicht mehr daran und das Studium ist jetzt schon so lange her, sodass ich da einfach nicht mehr weiter weiß. Ich erinnere mich, dass ich im Studium (Physik) auch mal so ein Problem hatte, aber da haben wirs dann auch einfach anders integriert um auf ne richtige Lösung zu kommen ...heute ein paar Jahre später habe ich aber die Zeit genauer hinzusehen und es lässt mich einfach nicht in ruhe, das mit der PI nicht lösen zu können und vorallem nicht zu wissen, wieso ich das nicht kann =)
Das Internet gibt leider keine verwertbaren Ergebnisse her, dass man die partielle Integration nicht verwenden dürfte, daher stelle ich hier meine Frage und bitte um Antwort, damit die arme Seele ihre Ruhe finden kann. =)
Liebe Grüße
Tamara